Database Design and Implementation

CS 645

Database theory
Theory problems in databases

- Expressiveness of languages
- Complexity of languages
- Static analysis of queries (for optimization)
- Views
Theory problems in databases

- Expressiveness of languages
 - Any query in L1 can be expressed in L2

- Complexity of languages
 - Bounds on resources required to evaluate any query in language L

- Static analysis of queries (for optimization)
 - Given q in L: is it minimal?
 - Given q1 and q2 in L: are they equivalent?

- Views
Crash review of complexity classes

- **AC^0**
- **L (LOGSPACE)**
- **NL (NLOGSPACE)**
- **NC**
- **P (PTIME)**
- **NP**
- **PSPACE**
Crash review of complexity classes

- **AC⁰**
 - Circuits of $O(1)$ depth and polynomial size

- **L (LOGSPACE)**
 - Solvable in logarithmic (small) space

- **NL (NLOGSPACE)**
 - “YES” answers checkable in logarithmic space

- **NC**
 - Solvable efficiently (in polylogarithmic time) on parallel computers

- **P (PTIME)**
 - Solvable in polynomial time

- **NP**
 - “YES” answers checkable in polynomial time

- **PSPACE**
 - Solvable with polynomial memory
Rules of thumb

- Step 1: check if you can solve the problem “in that class”
- Step 2: if not, check if your problem “looks like” (is reducible from) the complete problem from the next class.

- Of interest: PTIME-complete are not efficiently parallelizable.
Query complexity

Given a query Q and a database D, what is the complexity of computing Q(D)?

- The answer depends on the query language
 - Relational algebra, calculus, datalog

- Design tradeoff:
 - High complexity → rich queries
 - Low complexity → implemented efficiently
Complexity of query languages

Query Q, database D

- Data complexity
 - Fix Q, complexity $f(D)$
- Query complexity
 - Fix D, complexity $f(Q)$
- Combined complexity
 - Complexity $f(D, Q)$

Moshe Vardi
Conventions

- Complexity is usually defined for a decision problem
- We study the complexity of Boolean queries

- Complexity usually assumes some encoding of the input
- We encode instances using binary representation
Boolean queries

Definition: A Boolean query is a query that returns either true or false.

Non-Boolean

```
SELECT DISTINCT R.x, S.y
FROM    R, S
WHERE R.z = S.z
```

```
Q(x,y) :- R(x,z), S(z,y)
T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
```

Boolean

```
SELECT DISTINCT ‘yes’
FROM    R, S
WHERE R.x = ‘a’ and R.z = S.z and S.y = ‘b’
```

```
Q :- R(x,z), S(z,y)
T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
Answer() :- T(‘a’,’b’)```

---
Database encoding

 Encode $\mathbf{D} = (D, R_1^D, \ldots, R_k^D)$ as follows:

- Let $n = |\text{ADom}(D)|$
- If $R_i$ has arity $k$, encode it as a string of $n^k$ bits:
  - 0 means element $(a_1, \ldots a_k) \notin R_i^D$
  - 1 means element $(a_1, \ldots a_k) \in R_i^D$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Fix a Boolean query $Q$ in the query language. Determine the complexity of the following problem:

- Given an input database instance $D = (D, R_1^D, \cdots, R_k^D)$
- check if $Q(D) = \text{true}$

This is also known as model checking problem: check if $D$ is a model for $Q$. 

Data complexity
What is the complexity of relational queries?
Example

\[ Q = \exists z. \ R('a',z) \land S(z,'b') \]

Prove that \( Q \) is in \( AC^0 \)

<table>
<thead>
<tr>
<th>R:</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S:</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

\[ Q = \exists z. \, R('a',z) \land S(z,'b') \]

Prove that \( Q \) is in \( AC^0 \)

Circuit of depth 2

R:  
\[
\begin{array}{ccc}
  a & b & c \\
  \hline
  a & 0 & 1 & 1 \\
  b & 0 & 1 & 1 \\
  c & 1 & 0 & 0 \\
\end{array}
\]

S:  
\[
\begin{array}{ccc}
  a & b & c \\
  \hline
  a & 0 & 0 & 1 \\
  b & 1 & 1 & 0 \\
  c & 1 & 0 & 1 \\
\end{array}
\]

OR has n inputs
Each AND has 2 inputs
What is the complexity of relational queries?

All relational queries (expressible in RC) are in $\text{AC}^0$
What is the complexity of datalog queries?

\[ T(x,y) : - R(x,y) \\
T(x,y) : - T(x,z), R(z,y) \\
Answer() : - T('a','b') \]
Datalog is not in $AC^0$

- Parity is not in $AC^0$
- We will reduce parity to the reachability problem
- Given input $(x_1, x_2, x_3, x_4, x_5) = (0,1,1,0,1)$
  construct the graph:

```
T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
Answer() :- T('a_1','b_6')
```

The # of 1s is odd iff Answer is true
Datalog is in PTIME

Fix any Boolean datalog program P.

Given D, check if \( P(D) = \text{true} \) is in PTIME

Proof argument:

If an IDB has arity \( k \), then it will reach its fixpoint in at most \( n^k \) iterations.
Conjunctive Queries (CQ)

- A subset of FO (first order)
  - Less expressive

- Many queries in practice are conjunctive

- Some optimizers only handle CQs
  - Break larger queries into many CQs

- CQs have “better” theoretical properties than arbitrary queries
Conjunctive Queries

- R: Extensional database (EDB) – stored
- P: Intentional database (IDB) – computed

P(x, z) :- R(x, y) & R(y, z)

Diagram:
- "if"
- variables
- subgoals
- implicit ∃
- head
- body
- conjunction
Conjunctive Queries

- When facts in the body are true, we infer the head.
- Consider all possible assignments of variables in the body.

\[ P(x,z) :\neg R(x,y) \& R(y,z) \]
Conjunctive Queries

- A single datalog rule
- Equivalent to SELECT-DISTINCT-FROM-WHERE
- Select/project/join in RA
- Existential/conjunctive fraction of RC

Strictly speaking, we are not allowed to have non-equality selection predicates
Example

Find all employees having the same manager as ‘Smith’

\[ A(x) :\text{- ManagedBy(‘Smith’,y) \& ManagedBy(x,y)} \]

\[
\text{SELECT DISTINCT m2.name}\\
\text{FROM ManagedBy m1, ManagedBy m2}\\
\text{WHERE m1.name = ‘Smith’ AND}\\
\text{ m1.manager = m2.manager}
\]
Properties of CQ

- **Satisfiability**
  - A query is satisfiable if there exists some input relation $R$ such that $q(R)$ is non-empty
  - Every CQ is satisfiable

- **Monotonicity**
  - A query is monotonic if for each instance $I$, $J$ over the schema, $I \subseteq J$ implies $q(I) \subseteq q(J)$
  - Every CQ is monotonic
Satisfiability

We can always generate satisfying EDB relations from the body of the rule

\[ S(x,y,z) :- P(x,w) & R(w,y,v) & P(v,z) \]

\[
\begin{array}{c}
S \quad a \quad c \quad e \\
P \quad a \quad b \\
r \quad b \quad c \quad d \\
& d \quad e
\end{array}
\]
Monotonicity

\[ \text{ans}(u) : - R_1(u_1) \& \ldots \& R_n(u_n) \]

- Consider 2 databases \( I, J \), s.t. \( I \subseteq J \)
- Let \( t \in q(I) \)
  - For some substitution \( v \):
    - \( v(u_i) \in I(R_i) \) for each \( i \).
    - \( t = v(u) \)
  - Since \( I \subseteq J \), \( v(u_i) \in J(R_i) \) for each \( i \).
  - So \( t \in q(J) \)
Consequence of monotonicity

Product (pname, price, cid)
Company (cid, cname, city)

This query is not monotone
Therefore, not CQ
It cannot be expressed as a simple SFW query

Q: Find all companies that make only products with price < 100!

```
SELECT DISTINCT C.cname
FROM Company C
WHERE 100 > ALL (SELECT price
 FROM Product P
 WHERE P.cid = C.cid)
```
Equivalence and containment

- Needed for a variety of static analysis tasks
  - Query optimization
  - Query rewriting using views
  - Testing for semijoin reductions
**Definition:** Queries $q_1$ and $q_2$ are equivalent if for every database $D$, $q_1(D) = q_2(D)$

Notation: $q_1 \equiv q_2$
**Definition:** Query $q_1$ is contained in $q_2$ if for every database $D$, $q_1(D) \subseteq q_2(D)$

Notation: $q_1 \subseteq q_2$

**Fact:** $q_1 \subseteq q_2$ and $q_2 \subseteq q_1$ iff $q_1 \equiv q_2$

For the case of Boolean queries, containment is logical implication
Examples

Is $q_1 \subseteq q_2$? Yes

$q_1(x) :- R(x,u), R(u, 'Smith')$
$q_2(x) :- R(x,u), R(u,v)$
Is $q_1 \subseteq q_2$?  

**Yes**

$q_1(x) :- R(x,u), R(u,v), R(v,w)$

$q_2(x) :- R(x,u), R(u,v)$
Examples

Is $q_1 \subseteq q_2$?  No

$q_1(x) : - R(x,u), R(u,v), R(v,x)$
$q_2(x) : - R(x,u), R(u,x)$

Diagram:

```
 x -- u -- v
```

```
 x -- u
```
Is $q_1 \subseteq q_2$? Yes

$q_1(x) :- R(x,u), R(u,y)$
$q_2(x) :- R(x,u), R(v,u), R(u,y)$
Examples

Is $q_1 \subseteq q_2$? Yes

$q_1(x) :- R(x,u), R(u,v)$
$q_2(x) :- R(x,u), R(x,y), R(u,v), R(u,w)$
Examples

Is $q_1 \subseteq q_2$? Yes

$q_1(x) :- R(x,u), R(u,u)$
$q_2(x) :- R(x,u), R(u,v), R(v,w)$
Query containment

**Theorem:** The query containment and query equivalence problems for CQ are NP-complete.

**Theorem:** The query containment and query equivalence problems for Relational Calculus are undecidable.
Query containment for CQ

Two ways to test

- Check if $q_2$ holds (produces the canonical tuple of $q_1$) on the canonical database of $q_1$

- Check if there exists a homomorphism $q_2 \rightarrow q_1$
Canonical database

Canonical database for q1 is $\mathbf{d} = (D, R_1^D, \ldots, R_k^D)$
- $D$: all variables and constants in q1
- $R_1^D, \ldots, R_k^D$: the body of q1

Canonical tuple $t_{q1}$ is the head of q1
Example

Canonical database \( D = (D, R^D) \)
- \( D = \{ x, y, u, v \} \)
- \( R^D = \)

\[
\begin{array}{cc}
  x & u \\
  v & u \\
  v & y \\
\end{array}
\]

Canonical tuple \( t_{q1} = (x, y) \)

\( q1(x, y) :- R(x, u), R(v, u), R(v, y) \)
Example

Canonical database \( \mathbf{D} = (D, R) \)
- \( D = \{ x, u, 'Smith', 'Fred' \} \)
- \( R = \)

<table>
<thead>
<tr>
<th>x</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>( u )</td>
<td>'Smith'</td>
</tr>
<tr>
<td>( u )</td>
<td>'Fred'</td>
</tr>
<tr>
<td>( u )</td>
<td>( u )</td>
</tr>
</tbody>
</table>

Canonical tuple \( t_{q1} = (x) \)

\[ q1(x) :- R(x,u), R(u, 'Smith'), R(u,'Fred'), R(u,u) \]
Checking containment using the canonical database

\[ D = \{x,y,u,v\} \]

\[ R = \begin{array}{cc}
  x & u \\
v & u \\
v & y \\
\end{array} \]

q1 is contained in q2
A homomorphism $f: q_2 \to q_1$ is a function $f: \text{var}(q_2) \to \text{var}(q_1) \cup \text{const}(q_1)$, such that:

- $f(\text{body}(q_2)) \subseteq \text{body}(q_1)$
- $f(t_{q_1}) = t_{q_2}$
Example

\[ q_1(x,y) :\neg R(x,u), R(v,u), R(v,y) \]
\[ q_2(x,y) :\neg R(x,u), R(v,u), R(v,w), R(t,w), R(t,y) \]

\[ \text{var}(q_1) = \{x,u,v,y\} \]
\[ \text{var}(q_2) = \{x,u,v,w,t,y\} \]

\[ q_1 \text{ is contained in } q_2 \]
Example

\[
\text{var}(q1) \cup \text{const}(q1) = \{x, u, 'Smith'\}
\]

\[
\text{var}(q2) = \{x, u, v, w\}
\]

\[
q1(x) :- R(x, u), R(u, 'Smith'), R(u, 'Fred'), R(u, u)
\]

\[
q2(x) :- R(x, u), R(u, v), R(u, 'Smith'), R(w, u)
\]

q1 is contained in q2
**Theorem:** Checking containment of two CQs is NP-complete.

\[ \Phi = (\neg X_3 \lor \neg X_1 \lor X_4) \land (X_1 \lor X_2 \lor X_3) \land (\neg X_2 \lor \neg X_3 \lor X_1) \]

**Proof:** Reduction from 3-SAT

Given a 3CNF \( \Phi \)
Step 1:

construct q1 independently of \( \Phi \)

Step 2:

construct q2 from \( \Phi \)

Prove:

there exists a homomorphism \( q_2 \rightarrow q_1 \) iff \( \Phi \) is satisfiable
Proof: Step 1

There are 4 types of clauses in every 3SAT:

**Type 1:** \( \neg X \lor \neg Y \lor \neg Z \)

**Type 2:** \( \neg X \lor \neg Y \lor Z \)

**Type 3:** \( \neg X \lor Y \lor Z \)

**Type 4:** \( X \lor Y \lor Z \)

For each type, \( q_1 \) contains one relation with all 7 satisfying assignments, where \( u=0, v=1 \)

<table>
<thead>
<tr>
<th>R1 (misses v,v,v)</th>
<th>R2 (misses v,v,u)</th>
<th>R3 (misses v,u,u)</th>
<th>R4 (misses u,u,u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>u,u,u</td>
<td>u,u,u</td>
<td>u,u,u</td>
<td>u,u,v</td>
</tr>
<tr>
<td>u,u,v</td>
<td>u,u,v</td>
<td>u,v,v</td>
<td>u,v,v</td>
</tr>
<tr>
<td>u,v,u</td>
<td>u,v,u</td>
<td>u,v,u</td>
<td>u,v,v</td>
</tr>
<tr>
<td>v,u,u</td>
<td>v,u,u</td>
<td>v,u,v</td>
<td>v,v,u</td>
</tr>
<tr>
<td>v,u,v</td>
<td>v,u,v</td>
<td>v,v,u</td>
<td>v,v,v</td>
</tr>
<tr>
<td>v,v,u</td>
<td>v,v,v</td>
<td>v,v,v</td>
<td>v,v,v</td>
</tr>
</tbody>
</table>
Proof: Step 2

Constructing $q_2$

$q_2$ has one atom for each clause $\Phi$:

- Relation name is $R_1$, or $R_2$, or $R_3$, or $R_4$
- The variables are the same as those in the clause

Example:

$\Phi = (\neg X_3 \lor \neg X_1 \lor X_4) \land (X_1 \lor X_2 \lor X_3) \land (\neg X_2 \lor \neg X_3 \lor X_1)$

$q_2 = R_2(x_3,x_1,x_4), \ R_4(x_1,x_2,x_3), \ R_2(x_2,x_3,x_1)$
Proof

Suppose there is a satisfying assignment for $\Phi$ : it maps each $X_i$ to either 0 or 1

Define function $f$ : $\text{Vars}(q_2) \rightarrow \text{Vars}(q_1)$ :

- If $X_i = 0$ then $f(x_i) = u$
- If $X_i = 1$ then $f(x_i) = v$

Then $f$ is a homomorphism $f$ : $q_2 \rightarrow q_1$

Suppose there exists a homomorphism $f$ : $q_2 \rightarrow q_1$

Define the assignment:

- If $f(x_i) = u$ then $X_i = 0$
- If $f(x_i) = v$ then $X_i = 1$

This is a satisfying assignment for $\Phi$
Beyond CQ

- Containment for arbitrary relational queries is undecidable
- Any static analysis on relational queries is undecidable
- All these results follow from Trakhtenbrot’s theorem
Query containment for UCQ

\[ q_1 \cup q_2 \cup q_3 \ldots \subseteq q'_1 \cup q'_2 \cup q'_3 \ldots \]

Note:
\[ q_1 \cup q_2 \cup q_3 \ldots \subseteq q \iff q_1 \subseteq q \text{ and } q_2 \subseteq q \text{ and } \ldots \]

**Theorem:** \( q \subseteq q'_1 \cup q'_2 \cup q'_3 \ldots \) iff there exists some \( k \) such that \( q \subseteq q'_k \)
**Query minimization**

**Definition:** A conjunctive query $q$ is minimal, if for every other query $q'$ such that $q \equiv q'$, $q'$ has at least as many predicates (subgoals) as $q$.

Are these queries minimal?

\[
q(x) :\neg R(x,y), R(y,z), R(x,x)
\]

\[
q(x) :\neg R(x,y), R(y,z), R(x,'Alice')
\]
Query minimization

Algorithm:
- Choose a subgoal \( g \) of \( q \)
- Remove \( g \): let \( q' \) be the new query
  - \( q \subseteq q' \)  
  - If \( q' \subseteq q \), then permanently remove \( g \)

Why?

The order in which we inspect subgoals doesn’t matter
In practice

- No database system performs minimization
- It’s hard
- Users usually write minimal queries

- Non-minimal queries arise when using views intensely
Remember Semijoins?

\[ R \bowtie S = \Pi_{A_1, \ldots, A_n} (R \bowtie S) \]

\[ R \bowtie S = (R \bowtie S) \bowtie S \]

Prove that the following two datalog queries are equivalent:

\[
\begin{align*}
q_1(x,y,z) & : - R(x,y), S(x,z) \\
q_2(x,y,z) & : - R(x,y), S(x,u), S(x,z)
\end{align*}
\]

\[
\begin{align*}
R_1(x,y) & : - R(x,y), S(x,z) \\
q_2(x,y,z) & : - R_1(x,y), S(x,z)
\end{align*}
\]
Semijoins

- Important in distributed databases
- Often combined with Bloom filters
- See 22.10.2 in the textbook
Semijoin Reducer

Given a query: $Q = R_1 \bowtie R_2 \bowtie \ldots \bowtie R_n$

A **semijoin reducer** for $q$ is:

- $R_{i_1} = R_{i_1} \bowtie R_{j_1}$
- $R_{i_2} = R_{i_2} \bowtie R_{j_2}$
- ...
- $R_{i_p} = R_{i_p} \bowtie R_{j_p}$

Such that the query is equivalent to

- $Q = R_{k_1} \bowtie R_{k_2} \bowtie \ldots \bowtie R_{k_n}$

In a **full reducer**, no dangling tuples remain
Example

\[
Q = R(A,B) \Join S(B,C)
\]

Semijoin reducer:

\[
R_1(A,B) = R(A,B) \Join S(B,C)
\]

Re-written query: \( Q = R_1(A,B) \Join S(B,C) \)

Are there any dangling tuples?
Example

Q = R(A,B) \bowtie S(B,C)

Full semijoin reducer:
R1(A,B) = R(A,B) \bowtie S(B,C)
S1(B,C) = S(B,C) \bowtie R1(A,B)

Re-written query: Q = R1(A,B) \bowtie S1(B,C)

No more dangling tuples
More complex:

\[ Q = R(A,B) \bowtie S(B,C) \bowtie T(C,D,E) \]

Full reducer:

\[ S'(B,C) = S(B,C) \bowtie R(A,B) \]
\[ T'(C,D,E) = T(C,D,E) \bowtie S'(B,C) \]
\[ S''(B,C) = S'(B,C) \bowtie T'(C,D,E) \]
\[ R'(A,B) = R(A,B) \bowtie S''(B,C) \]

\[ Q = R'(A,B) \bowtie S''(B,C) \bowtie T'(C,D,E) \]
Semijoin Reducer

Example: \( Q = R(A,B) \bowtie S(B,C) \bowtie T(C,A) \)

No full reducer

Theorem: A query has a full reducer iff it is “acyclic”.

Expressive power of FO

Let $R(x,y)$ represent a graph

Query $\text{path}(x,y) =$

All $x, y$ such that there is a path from $x$ to $y$

Theorem: $\text{path}(x,y)$ cannot be expressed in FO
Non-recursive rules

**Graph** \( R(x,y) \)

\[
P(x,y) :\text{=} R(x,u), R(u,v), R(v,y) \\
A(x,y) :\text{=} P(x,u), P(u,y)
\]

**Can unfold into:**

\[
A(x,y) :\text{=} R(x,u), R(u,v), R(v,w), R(w,m), R(m,n), R(n,y)
\]
Non-recursive datalog with negation

- Expresses FO queries
  - Negated subgoals
  - Implicit union

- Can evaluate in an order such that all body predicates have been evaluated.
Recursion

Two forms of transitive closure

Path(x,y) :- R(x,y)
Path(x,y) :- Path(x,u), R(u,y)

Path(x,y) :- R(x,y)
Path(x,y) :- Path(x,u), Path(u,y)
Recursion example

- **EDB** \( \text{Par}(c,p) = p \) is parent of \( c \)

- **Generalized cousins**: people with common ancestors one or more generations back

\[
\text{Sib}(x,y) :- \text{Par}(x,p), \text{Par}(y,p), x \neq y
\]

\[
\text{Cousin}(x,y) :- \text{Sib}(x,y)
\]

\[
\text{Cousin}(x,y) :- \text{Par}(x,xp), \text{Par}(y,yp), \text{Cousin}(xp,yp)
\]
Definition of recursion

- Form a dependency graph whose nodes are IDB predicates
- Connect $X \rightarrow Y$ iff there is a rule with $X$ in the head and $Y$ in the body
- Cycle = recursion; no cycle = no recursion
Meaning of datalog rules

- **Model-theoretic**
  - Rules define a set of satisfying relations
  - Whenever body is true, head is true

- **Proof-theoretic**
  - Set of facts derivable from EDB relations by applying the rules.
Evaluating recursive rules

- This works if there is no negation
- Start with all IDB relations empty
- Repeatedly evaluate the rules using the EDB and the previous IDB to get the new IDB
- End when there is no change in the IDB relations
“Naïve” evaluation algorithm

Start: IDB = \emptyset

Apply rules to IDB, EDB

yes

Change to IDB?

no

done
Semi-naïve evaluation

- Since the EDB never changes, on each round we only get new IDB tuples if we use at least one IDB tuple obtained in the previous round.

- Saves work; lets us avoid re-discovering most known facts.
- Though a fact can still be derived in more than one way.
Par data: parent above child

Round 1

Round 2

Round 3
Recursion + negation

- Naïve evaluation doesn’t work when there are negated subgoals
- Negation wrapped in recursion makes no sense in general
- Even when they are separate, we can have ambiguity about the correct IDB relations
Stratified negation

- Stratification is a constraint usually placed on datalog with recursion and negation.
- It rules out negation wrapped inside recursion.
Example

Suppose $R = \{(1)\}$

Two models satisfy the rules:

- $P = \{\}$, $Q = \{1\}$
- $P = \{1\}$, $Q = \{\}$

\begin{align*}
P(x) & : \sim R(x) \& \sim Q(x) \\
Q(x) & : \sim R(x) \& \sim P(x)
\end{align*}
Intuitively, the stratum of an IDB predicate $P$ is the maximum number of negations that can be applied to an IDB predicate used in evaluating $P$.

- Stratified negation = finite strata
Stratum graph

- Nodes = IDB predicates
- Connect A → B if predicate A depends on B
- Label the edge “-” if the B subgoal is negated

- The stratum is the maximum number of “-” edges on a path leading from that node
- A datalog program is stratified if all its IDB predicates have finite strata
Example

Not stratified

\[
\begin{align*}
P(x) &::= R(x) \land \neg Q(x) \\
Q(x) &::= R(x) \land \neg P(x)
\end{align*}
\]
The stratified model

- When a datalog program is stratified, we can evaluate IDB predicates lowest-stratum-first.
- Once evaluated, treat it as EDB for higher strata.
Summary

- Query complexity
- Conjunctive queries
- Containment, equivalence, minimality
- Semijoin reductions
- Recursive datalog